PRODUCT SPECIFICATION SHEET

TM004Transport Swabs W/Stuart Medium (TM004)

Intended Use

Stuart Transport Medium (Transport Medium, Stuart) (DM250) is recommended for preservation and transportation of *Neisseria* species and other fastidious organisms from clinic to the laboratory.

Product Summary and Explanation

This medium is a chemically defined, semisolid, non-nutrient medium which prevent microbial proliferation. Transport media are chemically defined, semisolid, non-nutritive, phosphate buffered media that provide a reduced environment. Transport media are formulated to maintain the viability of microorganisms without significant increase in growth. In 1948, Moffett, Young and Stuart described a medium for transporting gonococcal specimens and other fastidious organisms during their transport from clinic to laboratory.⁽¹⁾ Originally formulated for the conservation of Neisseria gonorrhoeae and Trichomonas vaginalis, it may also be used for the transport of other bacteriological specimens. Stuart, Toshach and Patsula improved this formulation, introducing what is now known as Stuart's Transport Medium.⁽²⁾ Ringertz included thioglycollate in the Stuart Medium and omitted charcoal.⁽³⁾ The ability of Stuart's medium to maintain the viability of gonococci during transport led other researchers to explore its use with a variety of specimens. This medium is currently recommended for throat, vaginal and wound samples. Originally formulated for the conservation of Neisseria gonorrhoeae and Trichomonas vaginalis, it may also be used for the transport of other bacteriological specimens. Stuart et al.⁽⁴⁾ noted that the transport medium may also be used for Haemophilus influenzae, Streptococcus pneumoniae, Streptococcus pyogenes and Corynebacterium diphtheriae. Cooper⁽⁵⁾ investigated the extension of Stuart's method to the transport of swabs of clinical material containing upper respiratory tract and enteric pathogens. Stuart⁽⁶⁾ published an account of his experiences of the medium in a public health bacteriology, whilst Crookes and Stuart⁽⁷⁾ used the transport medium in combination with polymyxin B for the cultivation of N. gonorrhoeae. Because of this composition the medium ensures that microorganisms present are able to survive for a sufficiently long period of time.

Principles of the Procedure

Stuart Transport Medium contains calcium chloride along with sodium glycerophosphate acts as good buffering agent and also maintains osmotic equilibrium in the medium, while controlling permeability of bacterial cells. Sodium thioglycollate suppresses oxidative changes and provides a reduced environment. The medium provides an adequate degree of anaerobiosis which can be monitored by means of the redox indicator methylene blue. Methylene blue is a colorimetric pH indicator of the oxidation-reduction state.

Formula / Liter

Ingredients	Gms / Liter	
Sodium glycerophosphate	10.00	
Sodium thioglycollate	1.00	
Calcium chloride	0.10	
Methylene blue	0.002	
Agar	3.00	
Final pH: 7.4 ± 0.2 at 25°C		
Formula may be adjusted and/or supplemented as required to meet performance specifications		

Precautions

For In-Vitro Diagnostic Use Only.

Quality Control Specifications

Prepared Medium	Colourless to whitish coloured slightly opalescent butt with upper 10% or less	
	portion blue on standing	
Reaction of 1.41% Solution	pH : 7.4 ± 0.2 at 25°C	
Media Per tube	3ml	

Sterility test Passes release criteria

PRODUCT SPECIFICATION SHEET

Expected Cultural Response Cultural characteristics observed after an incubation at 35 - 37°C for 72 hours when subcultured from Stuart Transport Medium.

6-	Organisms	Results to be achieved	
No.		Inoculum (CFU)	Subculture Medium
1.	Haemophilus influenza ATCC 49247	good	Chocolate Agar (incubated in CO2 atmosphere)
2.	Neisseria gonorrhoeae ATCC 19424	good	Chocolate Agar (incubated in CO2 atmosphere)
3.	Streptococcus pneumoniae ATCC 6303	good	Tryptone Soya Agar with 5% sheep blood

The organisms listed are the minimum that should be used for quality control testing.

Test Procedure

- 1. Refer to appropriate references for specific procedures.
- 2. Obtain specimen with sterile swab sterile cotton-tipped swabs or wooden sticks. Insert specimen swab(s) into the upper third of the medium in the transport container. Cut with sterile scissors or break-off the protruding portion of the swab stick.
- 3. Tightly screw the lid on the bottle or vial or plug the tube with cotton, due to which the swab is forced to the bottom of the medium.
- 4. Label the bottle or vial and send to the laboratory with minimum delay. Specimens may be refrigerated until ready for shipment. DO NOT FREEZE.
- 5. Submit to laboratory within 24 hours for culture and analysis.

Results

- 1. Refer to appropriate references and standard procedures for interpretation of results.
- 2. Survival of bacteria in a transport medium depends on many factors including the type and concentration of bacteria in the specimen, the formulation of the transport medium, the temperature and duration of transport and inoculation to appropriate culture media within 24 hours.
- 3. Optimal growth and typical morphology can only be expected following direct inoculation and appropriate cultivation.

Storage

Store at 2-8°C. The product retains potency until the expiration date shown on the label when stored properly under ideal storage conditions.

Expiration

Refer to the expiration date stamped on the label.

Limitations of the Procedure

- Specimens taken from transport media will not exhibit the optimal or comparative growth as expected from direct inoculation and cultivation. These media do, however, provide an adequate degree of preservation for those specimens which cannot be forwarded immediately to the laboratory for prompt evaluation.
- Viability of cells will diminish over time and some degree of multiplication or growth of contaminants can occur during prolonged periods of transit. This is particularly true of fecal specimens that contain substantial numbers of coliform organisms.
- 3. The condition of the specimen received by the laboratory for culture is a significant variable in recovery and final identification of the suspect pathogen. An unsatisfactory specimen (overgrown by contaminants, containing nonviable organisms, or having the number of pathogens greatly diminished) can lead to erroneous or inconclusive results.

Packaging

Product Name: Transport swab with Stuart Medium

PRODUCT SPECIFICATION SHEET

Product Code: TM004 Available Pack sizes: 20 TB

References

- 1. Moffett, Young and Stuart. 1948. Br. Med. J. 2:421.
- 2. Stuart, Toshach and Patsula, 1954, Can. J. Public Health, 45:73.
- 3. Ringertz, 1960, Acta Pathol. Microbiol. Scand., 48:105.
- 4. Stuart R. D., Toshach S.R. and Patsula T.M. (1954) Canad. J. Publ. Hlth 45. 13-83.
- 5. Cooper G. N. (1967) J. Clin. Path. 10. 226-230.
- 6. Stuart R. D. (1959) Pub. Hlth Rep. Wash. 74. 431-438.
- 7. Crookes E.M.L. and Stuart R. D. (1959) J. Path. Bact. 78. 283-288.

Further Information

For further information please contact your local MICROMASTER Representative.

MICROMASTER LABORATORIES PRIVATE LIMITED Unit 38/39, Kalpataru Industrial Estate, Off G.B. Road, Near 'R-Mall', Thane (W) - 400607. M.S. INDIA. Ph: +91-9320126789/9833630009/9819991103 Email: <u>sales@micromasterlab.com</u> TM004PSS, QAD/FR/024, Rev.00

Disclaimer :

All Products conform exclusively to the information contained in this and other related Micromaster Publications. Users must ensure that the product(s) is appropriate for their application, prior to use. The information published in this publication is based on research and development work carried out in our laboratory and is to the best of our knowledge true and accurate. Micromaster Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are intended for laboratory, diagnostic, research or further manufacturing use only and not for human or animal or therapeutic use, unless otherwise specified. Statements included herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.

